NOTE: This is not a comprehensive review. Some topics, such as exploring behaviors of implicit relations, have already been touched on and others, such as extreme values, we will highlight in the Unit 6 review.

WARM UP:

The graph of a differentiable function g is shown below on the closed interval [-4,4]. How many values of x in the open interval (-4,4) satisfy the conclusion of the Mean Value Theorem for g on [-4,4]?

Now, given g(x), the same function shown above, has x-intercepts on the interval [-4, 4] at x = -3.8, x = -1, x = 0, and x = 3.4. Also, g(x) has horizontal tangents at x = -2.9, x = -0.5, and x = 2.2. Finally, let h(x) be a twice differentiable function such that h'(x) = g(x). Whew.

Determine the following about the function h(x) on the open interval (-4,4). Give your reasoning for each.

- 1. On what open interval(s) is h(x) increasing?
- 2. On what open interval(s) is h(x) decreasing?
- 3. On (-4,4), what are the *x*-coordinates of each local (relative) maximum on h(x)?
- 4. On (-4,4), what are the *x*-coordinates of each local (relative) minimum on h(x)?
- 5. On what open interval(s) is h(x) concave up?
- 6. On what open interval(s) is h(x) concave down?
- 7. What are the *x*-coordinates of each inflection point on h(x)?

2015 AB 5

- 5. The figure above shows the graph of f', the derivative of a twice-differentiable function f, on the interval [-3, 4]. The graph of f' has horizontal tangents at x = -1, x = 1, and x = 3. The areas of the regions bounded by the x-axis and the graph of f' on the intervals [-2, 1] and [1, 4] are 9 and 12, respectively.
 - (a) Find all x-coordinates at which f has a relative maximum. Give a reason for your answer.
 - (b) On what open intervals contained in -3 < x < 4 is the graph of f both concave down and decreasing? Give a reason for your answer.
 - (c) Find the x-coordinates of all points of inflection for the graph of f. Give a reason for your answer.
 - (d) Given that f(1) = 3, write an expression for f(x) that involves an integral. Find f(4) and f(-2).

2019 AB

t (hours)	0	0.3	1.7	2.8	4
$v_P(t)$ (meters per hour)	0	55	-29	55	48

- 2. The velocity of a particle, P, moving along the x-axis is given by the differentiable function v_P , where $v_P(t)$ is measured in meters per hour and t is measured in hours. Selected values of $v_P(t)$ are shown in the table above. Particle P is at the origin at time t = 0.
 - (a) Justify why there must be at least one time t, for $0.3 \le t \le 2.8$, at which $v_{P}'(t)$, the acceleration of particle P, equals 0 meters per hour per hour.

2017 AB

х	g(x)	g'(x)		
-5	10	-3		
-4	5	-1		
-3	2	4		
-2	3	1		
-1	1	-2		
0	0	-3		

Graph of h

6. Let f be the function defined by $f(x) = \cos(2x) + e^{\sin x}$.

Let g be a differentiable function. The table above gives values of g and its derivative g' at selected values of x. Let h be the function whose graph, consisting of five line segments, is shown in the figure above.

(d) Is there a number c in the closed interval [-5, -3] such that g'(c) = -4? Justify your answer.